00 0 0 0 0. Contoh 7.2.1 Diketahui A = − − 1 0 0 0 1 2 1 0 2, tentukan matriks yang mendiagonalisasi A dan matriks diagonalnya ! Jawab Dari jawaban pada contoh 7.1.1 , didapatkan nilai eigen : −1 , 1, dan 2 dengan basis ruang eigen yang bersesuaian berturut - turut adalah − 1 1 1, 0 1 0,
Jawabanpaling sesuai dengan pertanyaan Diketahui matriks A=([2,0],[-1,1]) dan B= ([3,-2],[-1,4]). Jika C=3A-2B, maka determinan C
Contoh7: Carilah matriks transformasi dari R2 ke R2 jika mula-mula vektor v diregang ( shear ) dengan faktor sebesar 3 dalam arah-x kemudian hasilnya dicerminkan terhadap y = x.
Vay Tiền Online Chuyển Khoản Ngay. PertanyaanDiketahui matriks A = 2 3 ​ 4 1 ​ dan I = 1 0 ​ 0 1 ​ . Jika matriks A − k I adalah matriks singular, nilai k yang memenuhi adalah ...Diketahui matriks dan . Jika matriks adalah matriks singular, nilai yang memenuhi adalah ...Jawabannilai k yang memenuhi adalah − 2 atau 5 .nilai yang memenuhi adalah .PembahasanPertama, tentukan matriks A − k I A − k I ​ = = = ​ 2 3 ​ 4 1 ​ − k 1 0 ​ 0 1 ​ 2 3 ​ 4 1 ​ − k 0 ​ 0 k ​ 2 − k 3 ​ 4 1 − k ​ ​ Ingat rumus determinan matriks A = a c ​ b d ​ → det A = ad − bc . Diketahui matriks A − k I adalah matriks singular, yang artinya determinan matriks A − k I bernilai 0. Dengan demikian, det A − k I 2 − k 1 − k − 4 â‹… 3 2 − 2 k − k + k 2 − 12 k 2 − 3 k − 10 k + 2 k − 5 ​ = = = = = ​ 0 0 0 0 0 ​ k + 2 = 0 k = − 2 ​ ∨ ​ k − 5 = 0 k = 5 ​ Jadi, nilai k yang memenuhi adalah − 2 atau 5 .Pertama, tentukan matriks Ingat rumus determinan matriks . Diketahui matriks adalah matriks singular, yang artinya determinan matriks bernilai 0. Dengan demikian, Jadi, nilai yang memenuhi adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!10rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!BRBatara Rafael SianiparPembahasan tidak lengkapnsnabilah sitiJawaban tidak sesuai
PembahasanMatriks dan . A 2 ​ = ⇔ ⇔ ​ 2 A 2 0 ​ 0 2 ​ 2 0 ​ 0 2 ​ = 2 2 0 ​ 0 2 ​ 4 0 ​ 0 4 ​ = 4 0 ​ 0 4 ​ ​ . pernyataan 1 benar. pernyataan 2 benar pernyataan 3 benar. Karena pada pernyataan sebelumnya A B = B A = 2 B maka B A B B A B B A B ​ = = = ​ 2 B 2 2 BB B A B pernyataan 4 benar ​ Pernyataan yang benar adalah pernyataan 1,2,3, dan 4. Jadi, jawaban yang tepat adalah dan . pernyataan 1 benar. pernyataan 2 benar pernyataan 3 benar. Karena pada pernyataan sebelumnya maka Pernyataan yang benar adalah pernyataan 1,2,3, dan 4. Jadi, jawaban yang tepat adalah A.
diketahui matriks a 2 0